core

package
v1.4.1 Latest Latest
Warning

This package is not in the latest version of its module.

Go to latest
Published: Oct 15, 2021 License: GPL-3.0 Imports: 50 Imported by: 0

Documentation

Overview

Package core implements the Ethereum consensus protocol.

Index

Examples

Constants

View Source
const (
	TriesInMemory = 128

	// BlockChainVersion ensures that an incompatible database forces a resync from scratch.
	//
	// Changelog:
	//
	// - Version 4
	//   The following incompatible database changes were added:
	//   * the `BlockNumber`, `TxHash`, `TxIndex`, `BlockHash` and `Index` fields of log are deleted
	//   * the `Bloom` field of receipt is deleted
	//   * the `BlockIndex` and `TxIndex` fields of txlookup are deleted
	// - Version 5
	//  The following incompatible database changes were added:
	//    * the `TxHash`, `GasCost`, and `ContractAddress` fields are no longer stored for a receipt
	//    * the `TxHash`, `GasCost`, and `ContractAddress` fields are computed by looking up the
	//      receipts' corresponding block
	// - Version 6
	//  The following incompatible database changes were added:
	//    * Transaction lookup information stores the corresponding block number instead of block hash
	// - Version 7
	//  The following incompatible database changes were added:
	//    * Use freezer as the ancient database to maintain all ancient data
	BlockChainVersion uint64 = 7
)

Variables

View Source
var (
	// ErrKnownBlock is returned when a block to import is already known locally.
	ErrKnownBlock = errors.New("block already known")

	// ErrBlacklistedHash is returned if a block to import is on the blacklist.
	ErrBlacklistedHash = errors.New("blacklisted hash")

	// ErrNoGenesis is returned when there is no Genesis Block.
	ErrNoGenesis = errors.New("genesis not found in chain")

	// ErrNotHeadBlock is returned when block to insert is not the next head
	// of the canonical chain
	ErrNotHeadBlock = errors.New("block is not next head block")
)
View Source
var (
	// ErrNonceTooLow is returned if the nonce of a transaction is lower than the
	// one present in the local chain.
	ErrNonceTooLow = errors.New("nonce too low")

	// ErrNonceTooHigh is returned if the nonce of a transaction is higher than the
	// next one expected based on the local chain.
	ErrNonceTooHigh = errors.New("nonce too high")

	// ErrGasLimitReached is returned by the gas pool if the amount of gas required
	// by a transaction is higher than what's left in the block.
	ErrGasLimitReached = errors.New("gas limit reached")

	// ErrInsufficientFundsForTransfer is returned if the transaction sender doesn't
	// have enough funds for transfer(topmost call only).
	// Note that the check for this is done after buying the gas.
	ErrInsufficientFundsForTransfer = errors.New("insufficient funds for transfer (after fees)")

	// ErrInsufficientFunds is returned if the total cost of executing a transaction
	// is higher than the balance of the user's account.
	ErrInsufficientFunds = errors.New("insufficient funds for gas * price + value + gatewayFee")

	// ErrGasPriceDoesNotExceedMinimum is returned if the gas price specified doesn't meet the
	// minimum specified by the GasPriceMinimum contract.
	ErrGasPriceDoesNotExceedMinimum = errors.New("gasprice is less than gas price minimum")

	// ErrInsufficientFundsForFees is returned if the account does have enough funds (in the
	// fee currency used for the transaction) to pay for the gas.
	ErrInsufficientFundsForFees = errors.New("insufficient funds to pay for fees")

	// ErrNonWhitelistedFeeCurrency is returned if the currency specified to use for the fees
	// isn't one of the currencies whitelisted for that purpose.
	ErrNonWhitelistedFeeCurrency = errors.New("non-whitelisted fee currency address")

	// ErrGasUintOverflow is returned when calculating gas usage.
	ErrGasUintOverflow = errors.New("gas uint64 overflow")

	// ErrIntrinsicGas is returned if the transaction is specified to use less gas
	// than required to start the invocation.
	ErrIntrinsicGas = errors.New("intrinsic gas too low")

	// ErrEthCompatibleTransactionsNotSupported is returned if the transaction omits the 3 Celo-only
	// fields (FeeCurrency & co.) but support for this kind of transaction is not enabled.
	ErrEthCompatibleTransactionsNotSupported = errors.New("support for eth-compatible transactions is not enabled")

	// ErrUnprotectedTransaction is returned if replay protection is required (post-Donut) but the transaction doesn't
	// use it.
	ErrUnprotectedTransaction = errors.New("replay protection is required")
)

List of evm-call-message pre-checking errors. All state transition messages will be pre-checked before execution. If any invalidation detected, the corresponding error should be returned which is defined here.

- If the pre-checking happens in the miner, then the transaction won't be packed. - If the pre-checking happens in the block processing procedure, then a "BAD BLOCk" error should be emitted.

View Source
var (
	// ErrAlreadyKnown is returned if the transactions is already contained
	// within the pool.
	ErrAlreadyKnown = errors.New("already known")

	// ErrInvalidSender is returned if the transaction contains an invalid signature.
	ErrInvalidSender = errors.New("invalid sender")

	// ErrUnderpriced is returned if a transaction's gas price is below the minimum
	// configured for the transaction pool.
	ErrUnderpriced = errors.New("transaction underpriced")

	// ErrReplaceUnderpriced is returned if a transaction is attempted to be replaced
	// with a different one without the required price bump.
	ErrReplaceUnderpriced = errors.New("replacement transaction underpriced")

	// ErrGasLimit is returned if a transaction's requested gas limit exceeds the
	// maximum allowance of the current block.
	ErrGasLimit = errors.New("exceeds block gas limit")

	// ErrNegativeValue is a sanity error to ensure no one is able to specify a
	// transaction with a negative value.
	ErrNegativeValue = errors.New("negative value")

	// ErrOversizedData is returned if the input data of a transaction is greater
	// than some meaningful limit a user might use. This is not a consensus error
	// making the transaction invalid, rather a DOS protection.
	ErrOversizedData = errors.New("oversized data")

	// ErrTransfersFrozen is returned if a transaction attempts to transfer between
	// non-whitelisted addresses while transfers are frozen.
	ErrTransfersFrozen = errors.New("transfers are currently frozen")
)
View Source
var BadHashes = map[common.Hash]bool{
	common.HexToHash("05bef30ef572270f654746da22639a7a0c97dd97a7050b9e252391996aaeb689"): true,
	common.HexToHash("7d05d08cbc596a2e5e4f13b80a743e53e09221b5323c3a61946b20873e58583f"): true,
}

BadHashes represent a set of manually tracked bad hashes (usually hard forks)

View Source
var (
	DBGenesisSupplyKey = []byte("genesis-supply-genesis")
)
View Source
var DefaultTxPoolConfig = TxPoolConfig{
	Journal:   "transactions.rlp",
	Rejournal: time.Hour,

	PriceLimit: 0,
	PriceBump:  10,

	AccountSlots: 16,
	GlobalSlots:  4096,
	AccountQueue: 64,
	GlobalQueue:  1024,

	Lifetime: 3 * time.Hour,
}

DefaultTxPoolConfig contains the default configurations for the transaction pool.

Functions

func AddBlockReceipt added in v1.4.0

func AddBlockReceipt(receipts types.Receipts, statedb *state.StateDB, blockHash common.Hash) types.Receipts

AddBlockReceipt checks whether logs were emitted by the core contract calls made as part of block processing outside of transactions. If there are any, it creates a receipt for them (the so-called "block receipt") and appends it to receipts

func ApplyTransaction

func ApplyTransaction(config *params.ChainConfig, bc ChainContext, txFeeRecipient *common.Address, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config, vmRunner vm.EVMRunner) (*types.Receipt, error)

ApplyTransaction attempts to apply a transaction to the given state database and uses the input parameters for its environment. It returns the receipt for the transaction, gas used and an error if the transaction failed, indicating the block was invalid.

func CheckEthCompatibility added in v1.4.0

func CheckEthCompatibility(msg Message) error

func GenerateChain

func GenerateChain(config *params.ChainConfig, parent *types.Block, engine consensus.Engine, db ethdb.Database, n int, gen func(int, *BlockGen)) ([]*types.Block, []types.Receipts)

GenerateChain creates a chain of n blocks. The first block's parent will be the provided parent. db is used to store intermediate states and should contain the parent's state trie.

The generator function is called with a new block generator for every block. Any transactions added to the generator become part of the block. If gen is nil, the blocks will be empty and their coinbase will be the zero address.

Blocks created by GenerateChain do not contain valid proof of work values. Inserting them into BlockChain requires use of a non-validating proof of work implementation.

Example
var (
	key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
	key2, _ = crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a")
	key3, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
	addr1   = crypto.PubkeyToAddress(key1.PublicKey)
	addr2   = crypto.PubkeyToAddress(key2.PublicKey)
	addr3   = crypto.PubkeyToAddress(key3.PublicKey)
	db      = rawdb.NewMemoryDatabase()
)

// Ensure that key1 has some funds in the genesis block.
gspec := &Genesis{
	Config: &params.ChainConfig{HomesteadBlock: new(big.Int), Istanbul: &params.IstanbulConfig{}},
	Alloc:  GenesisAlloc{addr1: {Balance: big.NewInt(1000000)}},
}
genesis := gspec.MustCommit(db)

// This call generates a chain of 5 blocks. The function runs for
// each block and adds different features to gen based on the
// block index.
signer := types.HomesteadSigner{}
chain, _ := GenerateChain(gspec.Config, genesis, mockEngine.NewFaker(), db, 5, func(i int, gen *BlockGen) {
	switch i {
	case 0:
		// In block 1, addr1 sends addr2 some ether.
		tx, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(10000), params.TxGas, nil, nil, nil, nil, nil), signer, key1)
		gen.AddTx(tx)
	case 1:
		// In block 2, addr1 sends some more ether to addr2.
		// addr2 passes it on to addr3.
		tx1, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(1000), params.TxGas, nil, nil, nil, nil, nil), signer, key1)
		tx2, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr2), addr3, big.NewInt(1000), params.TxGas, nil, nil, nil, nil, nil), signer, key2)
		gen.AddTx(tx1)
		gen.AddTx(tx2)
	case 2:
		// Block 3 is empty but was mined by addr3.
		gen.SetCoinbase(addr3)
		gen.SetExtra([]byte("yeehaw"))
	}
})

// Import the chain. This runs all block validation rules.
blockchain, _ := NewBlockChain(db, nil, gspec.Config, mockEngine.NewFaker(), vm.Config{}, nil, nil)
defer blockchain.Stop()

if i, err := blockchain.InsertChain(chain); err != nil {
	fmt.Printf("insert error (block %d): %v\n", chain[i].NumberU64(), err)
	return
}

state, _ := blockchain.State()
fmt.Printf("last block: #%d\n", blockchain.CurrentBlock().Number())
fmt.Println("balance of addr1:", state.GetBalance(addr1))
fmt.Println("balance of addr2:", state.GetBalance(addr2))
fmt.Println("balance of addr3:", state.GetBalance(addr3))
Output:

last block: #5
balance of addr1: 989000
balance of addr2: 10000
balance of addr3: 1003

func GenesisBlockForTesting

func GenesisBlockForTesting(db ethdb.Database, addr common.Address, balance *big.Int) *types.Block

GenesisBlockForTesting creates and writes a block in which addr has the given wei balance.

func IntrinsicGas

func IntrinsicGas(data []byte, contractCreation bool, feeCurrency *common.Address, gasForAlternativeCurrency uint64, isEIP2028 bool) (uint64, error)

IntrinsicGas computes the 'intrinsic gas' for a message with the given data.

func NewEVMContext added in v1.4.0

func NewEVMContext(msg Message, header *types.Header, chain ChainContext, txFeeRecipient *common.Address) vm.Context

New creates a new context for use in the EVM.

func SetupGenesisBlock

func SetupGenesisBlock(db ethdb.Database, genesis *Genesis) (*params.ChainConfig, common.Hash, error)

SetupGenesisBlock writes or updates the genesis block in db. The block that will be used is:

                     genesis == nil       genesis != nil
                  +------------------------------------------
db has no genesis |  main-net default  |  genesis
db has genesis    |  from DB           |  genesis (if compatible)

The stored chain configuration will be updated if it is compatible (i.e. does not specify a fork block below the local head block). In case of a conflict, the error is a *params.ConfigCompatError and the new, unwritten config is returned.

The returned chain configuration is never nil.

func SetupGenesisBlockWithOverride

func SetupGenesisBlockWithOverride(db ethdb.Database, genesis *Genesis, overrideEHardfork *big.Int) (*params.ChainConfig, common.Hash, error)

func ValidateTransactorBalanceCoversTx

func ValidateTransactorBalanceCoversTx(tx *types.Transaction, from common.Address, currentState *state.StateDB, currentVMRunner vm.EVMRunner, eHardfork bool) error

ValidateTransactorBalanceCoversTx validates transactor has enough funds to cover transaction cost: V + GP * GL.

Types

type BlockChain

type BlockChain struct {
	// contains filtered or unexported fields
}

BlockChain represents the canonical chain given a database with a genesis block. The Blockchain manages chain imports, reverts, chain reorganisations.

Importing blocks in to the block chain happens according to the set of rules defined by the two stage Validator. Processing of blocks is done using the Processor which processes the included transaction. The validation of the state is done in the second part of the Validator. Failing results in aborting of the import.

The BlockChain also helps in returning blocks from **any** chain included in the database as well as blocks that represents the canonical chain. It's important to note that GetBlock can return any block and does not need to be included in the canonical one where as GetBlockByNumber always represents the canonical chain.

func NewBlockChain

func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool, txLookupLimit *uint64) (*BlockChain, error)

NewBlockChain returns a fully initialised block chain using information available in the database. It initialises the default Ethereum Validator and Processor.

func (*BlockChain) BadBlocks

func (bc *BlockChain) BadBlocks() []*types.Block

BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network

func (*BlockChain) Config

func (bc *BlockChain) Config() *params.ChainConfig

Config retrieves the chain's fork configuration.

func (*BlockChain) CurrentBlock

func (bc *BlockChain) CurrentBlock() *types.Block

CurrentBlock retrieves the current head block of the canonical chain. The block is retrieved from the blockchain's internal cache.

func (*BlockChain) CurrentFastBlock

func (bc *BlockChain) CurrentFastBlock() *types.Block

CurrentFastBlock retrieves the current fast-sync head block of the canonical chain. The block is retrieved from the blockchain's internal cache.

func (*BlockChain) CurrentHeader

func (bc *BlockChain) CurrentHeader() *types.Header

CurrentHeader retrieves the current head header of the canonical chain. The header is retrieved from the HeaderChain's internal cache.

func (*BlockChain) Engine

func (bc *BlockChain) Engine() consensus.Engine

Engine retrieves the blockchain's consensus engine.

func (*BlockChain) Export

func (bc *BlockChain) Export(w io.Writer) error

Export writes the active chain to the given writer.

func (*BlockChain) ExportN

func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error

ExportN writes a subset of the active chain to the given writer.

func (*BlockChain) FastSyncCommitHead

func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error

FastSyncCommitHead sets the current head block to the one defined by the hash irrelevant what the chain contents were prior.

func (*BlockChain) Genesis

func (bc *BlockChain) Genesis() *types.Block

Genesis retrieves the chain's genesis block.

func (*BlockChain) GetAncestor

func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64)

GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the number of blocks to be individually checked before we reach the canonical chain.

Note: ancestor == 0 returns the same block, 1 returns its parent and so on.

func (*BlockChain) GetBlock

func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block

GetBlock retrieves a block from the database by hash and number, caching it if found.

func (*BlockChain) GetBlockByHash

func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block

GetBlockByHash retrieves a block from the database by hash, caching it if found.

func (*BlockChain) GetBlockByNumber

func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block

GetBlockByNumber retrieves a block from the database by number, caching it (associated with its hash) if found.

func (*BlockChain) GetBlockHashesFromHash

func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash

GetBlockHashesFromHash retrieves a number of block hashes starting at a given hash, fetching towards the genesis block.

func (*BlockChain) GetBlocksFromHash

func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block)

GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors. [deprecated by eth/62]

func (*BlockChain) GetBody

func (bc *BlockChain) GetBody(hash common.Hash) *types.Body

GetBody retrieves a block body (transactions) from the database by hash, caching it if found.

func (*BlockChain) GetBodyRLP

func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue

GetBodyRLP retrieves a block body in RLP encoding from the database by hash, caching it if found.

func (*BlockChain) GetCanonicalHash

func (bc *BlockChain) GetCanonicalHash(number uint64) common.Hash

GetCanonicalHash returns the canonical hash for a given block number

func (*BlockChain) GetDatabase

func (bc *BlockChain) GetDatabase() ethdb.Database

GetDatabase returns the block chain's database

func (*BlockChain) GetHeader

func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *types.Header

GetHeader retrieves a block header from the database by hash and number, caching it if found.

func (*BlockChain) GetHeaderByHash

func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *types.Header

GetHeaderByHash retrieves a block header from the database by hash, caching it if found.

func (*BlockChain) GetHeaderByNumber

func (bc *BlockChain) GetHeaderByNumber(number uint64) *types.Header

GetHeaderByNumber retrieves a block header from the database by number, caching it (associated with its hash) if found.

func (*BlockChain) GetReceiptsByHash

func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts

GetReceiptsByHash retrieves the receipts for all transactions in a given block.

func (*BlockChain) GetTd

func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int

GetTd retrieves a block's total difficulty in the canonical chain from the database by hash and number, caching it if found.

func (*BlockChain) GetTdByHash

func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int

GetTdByHash retrieves a block's total difficulty in the canonical chain from the database by hash, caching it if found.

func (*BlockChain) GetTransactionLookup

func (bc *BlockChain) GetTransactionLookup(hash common.Hash) *rawdb.LegacyTxLookupEntry

GetTransactionLookup retrieves the lookup associate with the given transaction hash from the cache or database.

func (*BlockChain) GetVMConfig

func (bc *BlockChain) GetVMConfig() *vm.Config

GetVMConfig returns the block chain VM config.

func (*BlockChain) HasBadBlock

func (bc *BlockChain) HasBadBlock(hash common.Hash) bool

HasBadBlock returns whether the block with the hash is a bad block

func (*BlockChain) HasBlock

func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool

HasBlock checks if a block is fully present in the database or not.

func (*BlockChain) HasBlockAndState

func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool

HasBlockAndState checks if a block and associated state trie is fully present in the database or not, caching it if present.

func (*BlockChain) HasFastBlock

func (bc *BlockChain) HasFastBlock(hash common.Hash, number uint64) bool

HasFastBlock checks if a fast block is fully present in the database or not.

func (*BlockChain) HasHeader

func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool

HasHeader checks if a block header is present in the database or not, caching it if present.

func (*BlockChain) HasState

func (bc *BlockChain) HasState(hash common.Hash) bool

HasState checks if state trie is fully present in the database or not.

func (*BlockChain) InsertChain

func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error)

InsertChain attempts to insert the given batch of blocks in to the canonical chain or, otherwise, create a fork. If an error is returned it will return the index number of the failing block as well an error describing what went wrong.

After insertion is done, all accumulated events will be fired.

func (*BlockChain) InsertHeaderChain

func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int, contiguousHeaders bool) (int, error)

InsertHeaderChain attempts to insert the given header chain in to the local chain, possibly creating a reorg. If an error is returned, it will return the index number of the failing header as well an error describing what went wrong.

func (*BlockChain) InsertPreprocessedBlock added in v1.4.0

func (bc *BlockChain) InsertPreprocessedBlock(block *types.Block, receipts []*types.Receipt, logs []*types.Log, state *state.StateDB) error

InsertPreprocessedBlock inserts a block which is already processed. It can only insert the new Head block

func (*BlockChain) InsertReceiptChain

func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts, ancientLimit uint64) (int, error)

InsertReceiptChain attempts to complete an already existing header chain with transaction and receipt data.

func (*BlockChain) NewEVMRunner added in v1.4.0

func (bc *BlockChain) NewEVMRunner(header *types.Header, state vm.StateDB) vm.EVMRunner

NewEVMRunner creates the System's EVMRunner for given header & sttate

func (*BlockChain) NewEVMRunnerForCurrentBlock added in v1.4.0

func (bc *BlockChain) NewEVMRunnerForCurrentBlock() (vm.EVMRunner, error)

NewEVMRunnerForCurrentBlock creates the System's EVMRunner for current block & state

func (*BlockChain) Processor

func (bc *BlockChain) Processor() Processor

Processor returns the current processor.

func (*BlockChain) RecoverRandomnessCache

func (bc *BlockChain) RecoverRandomnessCache(commitment common.Hash, commitmentBlockHash common.Hash) error

RecoverRandomnessCache will do a search for the block that was used to generate the given commitment. Specifically, it will find the block that this node authored and that block's parent hash is used to created the commitment. The search is a reverse iteration of the node's local chain starting at the block where it's hash is the given commitmentBlockHash.

func (*BlockChain) Reset

func (bc *BlockChain) Reset() error

Reset purges the entire blockchain, restoring it to its genesis state.

func (*BlockChain) ResetWithGenesisBlock

func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error

ResetWithGenesisBlock purges the entire blockchain, restoring it to the specified genesis state.

func (*BlockChain) SetHead

func (bc *BlockChain) SetHead(head uint64) error

SetHead rewinds the local chain to a new head. Depending on whether the node was fast synced or full synced and in which state, the method will try to delete minimal data from disk whilst retaining chain consistency.

func (*BlockChain) SetHeadBeyondRoot added in v1.3.1

func (bc *BlockChain) SetHeadBeyondRoot(head uint64, root common.Hash) (uint64, error)

SetHeadBeyondRoot rewinds the local chain to a new head with the extra condition that the rewind must pass the specified state root. This method is meant to be used when rewiding with snapshots enabled to ensure that we go back further than persistent disk layer. Depending on whether the node was fast synced or full, and in which state, the method will try to delete minimal data from disk whilst retaining chain consistency.

The method returns the block number where the requested root cap was found.

func (*BlockChain) SetTxLookupLimit added in v1.4.0

func (bc *BlockChain) SetTxLookupLimit(limit uint64)

SetTxLookupLimit is responsible for updating the txlookup limit to the original one stored in db if the new mismatches with the old one.

func (*BlockChain) Snapshot

func (bc *BlockChain) Snapshot() *snapshot.Tree

Snapshot returns the blockchain snapshot tree. This method is mainly used for testing, to make it possible to verify the snapshot after execution.

Warning: There are no guarantees about the safety of using the returned 'snap' if the blockchain is simultaneously importing blocks, so take care.

func (*BlockChain) Snapshots added in v1.3.1

func (bc *BlockChain) Snapshots() *snapshot.Tree

Add this to solve conflicts due to cherry-picking

func (*BlockChain) State

func (bc *BlockChain) State() (*state.StateDB, error)

State returns a new mutable state based on the current HEAD block.

func (*BlockChain) StateAt

func (bc *BlockChain) StateAt(root common.Hash) (*state.StateDB, error)

StateAt returns a new mutable state based on a particular point in time.

func (*BlockChain) StateCache

func (bc *BlockChain) StateCache() state.Database

StateCache returns the caching database underpinning the blockchain instance.

func (*BlockChain) Stop

func (bc *BlockChain) Stop()

Stop stops the blockchain service. If any imports are currently in progress it will abort them using the procInterrupt.

func (*BlockChain) StopInsert added in v1.4.0

func (bc *BlockChain) StopInsert()

StopInsert interrupts all insertion methods, causing them to return errInsertionInterrupted as soon as possible. Insertion is permanently disabled after calling this method.

func (*BlockChain) SubscribeBlockProcessingEvent

func (bc *BlockChain) SubscribeBlockProcessingEvent(ch chan<- bool) event.Subscription

SubscribeBlockProcessingEvent registers a subscription of bool where true means block processing has started while false means it has stopped.

func (*BlockChain) SubscribeChainEvent

func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription

SubscribeChainEvent registers a subscription of ChainEvent.

func (*BlockChain) SubscribeChainHeadEvent

func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription

SubscribeChainHeadEvent registers a subscription of ChainHeadEvent.

func (*BlockChain) SubscribeChainSideEvent

func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription

SubscribeChainSideEvent registers a subscription of ChainSideEvent.

func (*BlockChain) SubscribeLogsEvent

func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription

SubscribeLogsEvent registers a subscription of []*types.Log.

func (*BlockChain) SubscribeRemovedLogsEvent

func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription

SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent.

func (*BlockChain) TrieNode

func (bc *BlockChain) TrieNode(hash common.Hash) ([]byte, error)

TrieNode retrieves a blob of data associated with a trie node (or code hash) either from ephemeral in-memory cache, or from persistent storage.

func (*BlockChain) TxLookupLimit added in v1.4.0

func (bc *BlockChain) TxLookupLimit() uint64

TxLookupLimit retrieves the txlookup limit used by blockchain to prune stale transaction indices.

func (*BlockChain) Validator

func (bc *BlockChain) Validator() Validator

Validator returns the current validator.

type BlockContext added in v1.4.0

type BlockContext struct {
	// contains filtered or unexported fields
}

BlockContext represents contextual information about the blockchain state for a given block

func NewBlockContext added in v1.4.0

func NewBlockContext(vmRunner vm.EVMRunner) BlockContext

NewBlockContext creates a block context for a given block (represented by the header & state). state MUST be pointing to header's stateRoot

func (*BlockContext) GetIntrinsicGasForAlternativeFeeCurrency added in v1.4.0

func (bc *BlockContext) GetIntrinsicGasForAlternativeFeeCurrency() uint64

GetIntrinsicGasForAlternativeFeeCurrency retrieves intrisic gas to be paid for any tx with a non native fee currency

func (*BlockContext) IsWhitelisted added in v1.4.0

func (bc *BlockContext) IsWhitelisted(feeCurrency *common.Address) bool

IsWhitelisted indicates if the currency is whitelisted as a fee currency

type BlockGen

type BlockGen struct {
	// contains filtered or unexported fields
}

BlockGen creates blocks for testing. See GenerateChain for a detailed explanation.

func (*BlockGen) AddTx

func (b *BlockGen) AddTx(tx *types.Transaction)

AddTx adds a transaction to the generated block. If no coinbase has been set, the block's coinbase is set to the zero address.

AddTx panics if the transaction cannot be executed. In addition to the protocol-imposed limitations (gas limit, etc.), there are some further limitations on the content of transactions that can be added. Notably, contract code relying on the BLOCKHASH instruction will panic during execution.

func (*BlockGen) AddTxWithChain

func (b *BlockGen) AddTxWithChain(bc ChainContext, tx *types.Transaction)

AddTxWithChain adds a transaction to the generated block. If no coinbase has been set, the block's coinbase is set to the zero address.

AddTxWithChain panics if the transaction cannot be executed. In addition to the protocol-imposed limitations (gas limit, etc.), there are some further limitations on the content of transactions that can be added. If contract code relies on the BLOCKHASH instruction, the block in chain will be returned.

func (*BlockGen) AddUncheckedReceipt

func (b *BlockGen) AddUncheckedReceipt(receipt *types.Receipt)

AddUncheckedReceipt forcefully adds a receipts to the block without a backing transaction.

AddUncheckedReceipt will cause consensus failures when used during real chain processing. This is best used in conjunction with raw block insertion.

func (*BlockGen) AddUncheckedTx

func (b *BlockGen) AddUncheckedTx(tx *types.Transaction)

AddUncheckedTx forcefully adds a transaction to the block without any validation.

AddUncheckedTx will cause consensus failures when used during real chain processing. This is best used in conjunction with raw block insertion.

func (*BlockGen) Number

func (b *BlockGen) Number() *big.Int

Number returns the block number of the block being generated.

func (*BlockGen) OffsetTime

func (b *BlockGen) OffsetTime(seconds int64)

OffsetTime modifies the time instance of a block. It's useful to test scenarios where forking is not tied to chain length directly. NOTE: `gen.OffsetTime(int)` is used throughout the code in this test file to adjust the total difficulty. This made sense with Ethhash, but is no longer relevant to Istanbul consensus because difficulty is constant. These calls can likely be removed, but have not been as a matter of simplicity.

func (*BlockGen) PrevBlock

func (b *BlockGen) PrevBlock(index int) *types.Block

PrevBlock returns a previously generated block by number. It panics if num is greater or equal to the number of the block being generated. For index -1, PrevBlock returns the parent block given to GenerateChain.

func (*BlockGen) SetCoinbase

func (b *BlockGen) SetCoinbase(addr common.Address)

SetCoinbase sets the coinbase of the generated block. It can be called at most once.

Note: This must be called after the parent and statedb are set or CalcGasLimit will return the wrong amount without throwing an error.

func (*BlockGen) SetExtra

func (b *BlockGen) SetExtra(data []byte)

SetExtra sets the extra data field of the generated block.

func (*BlockGen) TxNonce

func (b *BlockGen) TxNonce(addr common.Address) uint64

TxNonce returns the next valid transaction nonce for the account at addr. It panics if the account does not exist.

type BlockValidator

type BlockValidator struct {
	// contains filtered or unexported fields
}

BlockValidator is responsible for validating block headers and processed state.

BlockValidator implements Validator.

func NewBlockValidator

func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus.Engine) *BlockValidator

NewBlockValidator returns a new block validator which is safe for re-use

func (*BlockValidator) ValidateBody

func (v *BlockValidator) ValidateBody(block *types.Block) error

ValidateBody verifies the block header's transaction. The headers are assumed to be already validated at this point.

func (*BlockValidator) ValidateState

func (v *BlockValidator) ValidateState(block *types.Block, statedb *state.StateDB, receipts types.Receipts, usedGas uint64) error

ValidateState validates the various changes that happen after a state transition, such as amount of used gas, the receipt roots and the state root itself. ValidateState returns a database batch if the validation was a success otherwise nil and an error is returned.

type CacheConfig

type CacheConfig struct {
	TrieCleanLimit      int           // Memory allowance (MB) to use for caching trie nodes in memory
	TrieCleanJournal    string        // Disk journal for saving clean cache entries.
	TrieCleanRejournal  time.Duration // Time interval to dump clean cache to disk periodically
	TrieCleanNoPrefetch bool          // Whether to disable heuristic state prefetching for followup blocks
	TrieDirtyLimit      int           // Memory limit (MB) at which to start flushing dirty trie nodes to disk
	TrieDirtyDisabled   bool          // Whether to disable trie write caching and GC altogether (archive node)
	TrieTimeLimit       time.Duration // Time limit after which to flush the current in-memory trie to disk
	SnapshotLimit       int           // Memory allowance (MB) to use for caching snapshot entries in memory

	SnapshotWait bool // Wait for snapshot construction on startup. TODO(karalabe): This is a dirty hack for testing, nuke it
}

CacheConfig contains the configuration values for the trie caching/pruning that's resident in a blockchain.

type ChainContext added in v1.4.0

type ChainContext interface {
	// Engine retrieves the blockchain's consensus engine.
	Engine() consensus.Engine

	// GetHeader returns the hash corresponding to the given hash and number.
	GetHeader(common.Hash, uint64) *types.Header

	// GetHeaderByNumber returns the hash corresponding number.
	// in the correct fork.
	GetHeaderByNumber(uint64) *types.Header

	// Config returns the blockchain's chain configuration
	Config() *params.ChainConfig
}

ChainContext supports retrieving chain data and consensus parameters from the blockchain to be used during transaction processing.

type ChainEvent

type ChainEvent struct {
	Block *types.Block
	Hash  common.Hash
	Logs  []*types.Log
}

type ChainHeadEvent

type ChainHeadEvent struct{ Block *types.Block }

type ChainIndexer

type ChainIndexer struct {
	// contains filtered or unexported fields
}

ChainIndexer does a post-processing job for equally sized sections of the canonical chain (like BlooomBits and CHT structures). A ChainIndexer is connected to the blockchain through the event system by starting a ChainHeadEventLoop in a goroutine.

Further child ChainIndexers can be added which use the output of the parent section indexer. These child indexers receive new head notifications only after an entire section has been finished or in case of rollbacks that might affect already finished sections.

func NewChainIndexer

func NewChainIndexer(chainDb ethdb.Database, indexDb ethdb.Database, backend ChainIndexerBackend, section, confirm uint64, throttling time.Duration, kind string, fullChainDownloaded bool) *ChainIndexer

NewChainIndexer creates a new chain indexer to do background processing on chain segments of a given size after certain number of confirmations passed. The throttling parameter might be used to prevent database thrashing.

func (*ChainIndexer) AddCheckpoint

func (c *ChainIndexer) AddCheckpoint(section uint64, shead common.Hash)

AddCheckpoint adds a checkpoint. Sections are never processed and the chain is not expected to be available before this point. The indexer assumes that the backend has sufficient information available to process subsequent sections.

Note: knownSections == 0 and storedSections == checkpointSections until syncing reaches the checkpoint

func (*ChainIndexer) AddChildIndexer

func (c *ChainIndexer) AddChildIndexer(indexer *ChainIndexer)

AddChildIndexer adds a child ChainIndexer that can use the output of this one

func (*ChainIndexer) Close

func (c *ChainIndexer) Close() error

Close tears down all goroutines belonging to the indexer and returns any error that might have occurred internally.

func (*ChainIndexer) Prune added in v1.4.0

func (c *ChainIndexer) Prune(threshold uint64) error

Prune deletes all chain data older than given threshold.

func (*ChainIndexer) SectionHead

func (c *ChainIndexer) SectionHead(section uint64) common.Hash

SectionHead retrieves the last block hash of a processed section from the index database.

func (*ChainIndexer) Sections

func (c *ChainIndexer) Sections() (uint64, uint64, common.Hash)

Sections returns the number of processed sections maintained by the indexer and also the information about the last header indexed for potential canonical verifications.

func (*ChainIndexer) Start

func (c *ChainIndexer) Start(chain ChainIndexerChain)

Start creates a goroutine to feed chain head events into the indexer for cascading background processing. Children do not need to be started, they are notified about new events by their parents.

type ChainIndexerBackend

type ChainIndexerBackend interface {
	// Reset initiates the processing of a new chain segment, potentially terminating
	// any partially completed operations (in case of a reorg).
	Reset(ctx context.Context, section uint64, prevHead common.Hash) error

	// Process crunches through the next header in the chain segment. The caller
	// will ensure a sequential order of headers.
	Process(ctx context.Context, header *types.Header) error

	// Commit finalizes the section metadata and stores it into the database.
	Commit() error

	// Prune deletes the chain index older than the given threshold.
	Prune(threshold uint64) error
}

ChainIndexerBackend defines the methods needed to process chain segments in the background and write the segment results into the database. These can be used to create filter blooms or CHTs.

type ChainIndexerChain

type ChainIndexerChain interface {
	// CurrentHeader retrieves the latest locally known header.
	CurrentHeader() *types.Header

	// SubscribeChainHeadEvent subscribes to new head header notifications.
	SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription
}

ChainIndexerChain interface is used for connecting the indexer to a blockchain

type ChainSideEvent

type ChainSideEvent struct {
	Block *types.Block
}

type DeleteBlockContentCallback

type DeleteBlockContentCallback func(ethdb.KeyValueWriter, common.Hash, uint64)

DeleteBlockContentCallback is a callback function that is called by SetHead before each header is deleted.

type ExecutionResult

type ExecutionResult struct {
	UsedGas    uint64 // Total used gas but include the refunded gas
	Err        error  // Any error encountered during the execution(listed in core/vm/errors.go)
	ReturnData []byte // Returned data from evm(function result or data supplied with revert opcode)
}

ExecutionResult includes all output after executing given evm message no matter the execution itself is successful or not.

func ApplyMessage

func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool, vmRunner vm.EVMRunner) (*ExecutionResult, error)

ApplyMessage computes the new state by applying the given message against the old state within the environment.

ApplyMessage returns the bytes returned by any EVM execution (if it took place), the gas used (which includes gas refunds) and an error if it failed. An error always indicates a core error meaning that the message would always fail for that particular state and would never be accepted within a block.

func ApplyMessageWithoutGasPriceMinimum

func ApplyMessageWithoutGasPriceMinimum(evm *vm.EVM, msg Message, gp *GasPool, vmRunner vm.EVMRunner) (*ExecutionResult, error)

ApplyMessageWithoutGasPriceMinimum applies the given message with the gas price minimum set to zero. It's only for use in eth_call and eth_estimateGas, so that they can be used with gas price set to zero if the sender doesn't have funds to pay for gas. Returns the gas used (which does not include gas refunds) and an error if it failed.

func (*ExecutionResult) Failed

func (result *ExecutionResult) Failed() bool

Failed returns the indicator whether the execution is successful or not

func (*ExecutionResult) Return

func (result *ExecutionResult) Return() []byte

Return is a helper function to help caller distinguish between revert reason and function return. Return returns the data after execution if no error occurs.

func (*ExecutionResult) Revert

func (result *ExecutionResult) Revert() []byte

Revert returns the concrete revert reason if the execution is aborted by `REVERT` opcode. Note the reason can be nil if no data supplied with revert opcode.

func (*ExecutionResult) Unwrap

func (result *ExecutionResult) Unwrap() error

Unwrap returns the internal evm error which allows us for further analysis outside.

type GasPool

type GasPool uint64

GasPool tracks the amount of gas available during execution of the transactions in a block. The zero value is a pool with zero gas available.

func (*GasPool) AddGas

func (gp *GasPool) AddGas(amount uint64) *GasPool

AddGas makes gas available for execution.

func (*GasPool) Gas

func (gp *GasPool) Gas() uint64

Gas returns the amount of gas remaining in the pool.

func (*GasPool) String

func (gp *GasPool) String() string

func (*GasPool) SubGas

func (gp *GasPool) SubGas(amount uint64) error

SubGas deducts the given amount from the pool if enough gas is available and returns an error otherwise.

type Genesis

type Genesis struct {
	Config    *params.ChainConfig `json:"config"`
	Timestamp uint64              `json:"timestamp"`
	ExtraData []byte              `json:"extraData"`
	Coinbase  common.Address      `json:"coinbase"`
	Alloc     GenesisAlloc        `json:"alloc"      gencodec:"required"`

	// These fields are used for consensus tests. Please don't use them
	// in actual genesis blocks.
	Number     uint64      `json:"number"`
	GasUsed    uint64      `json:"gasUsed"`
	ParentHash common.Hash `json:"parentHash"`
}

Genesis specifies the header fields, state of a genesis block. It also defines hard fork switch-over blocks through the chain configuration.

func DefaultAlfajoresGenesisBlock

func DefaultAlfajoresGenesisBlock() *Genesis

func DefaultBaklavaGenesisBlock

func DefaultBaklavaGenesisBlock() *Genesis

DefaultBaklavaGenesisBlock returns the Baklava network genesis block.

func DeveloperGenesisBlock

func DeveloperGenesisBlock() *Genesis

DeveloperGenesisBlock returns the 'geth --dev' genesis block.

func MainnetGenesisBlock

func MainnetGenesisBlock() *Genesis

MainnetGenesisBlock returns the Celo main net genesis block.

func (*Genesis) Commit

func (g *Genesis) Commit(db ethdb.Database) (*types.Block, error)

Commit writes the block and state of a genesis specification to the database. The block is committed as the canonical head block.

func (Genesis) MarshalJSON

func (g Genesis) MarshalJSON() ([]byte, error)

MarshalJSON marshals as JSON.

func (*Genesis) MustCommit

func (g *Genesis) MustCommit(db ethdb.Database) *types.Block

MustCommit writes the genesis block and state to db, panicking on error. The block is committed as the canonical head block.

func (*Genesis) StoreGenesisSupply

func (g *Genesis) StoreGenesisSupply(db ethdb.Database) error

StoreGenesisSupply computes the total supply of the genesis block and stores it in the db.

func (*Genesis) ToBlock

func (g *Genesis) ToBlock(db ethdb.Database) *types.Block

ToBlock creates the genesis block and writes state of a genesis specification to the given database (or discards it if nil).

func (*Genesis) UnmarshalJSON

func (g *Genesis) UnmarshalJSON(input []byte) error

UnmarshalJSON unmarshals from JSON.

type GenesisAccount

type GenesisAccount struct {
	Code       []byte                      `json:"code,omitempty"`
	Storage    map[common.Hash]common.Hash `json:"storage,omitempty"`
	Balance    *big.Int                    `json:"balance" gencodec:"required"`
	Nonce      uint64                      `json:"nonce,omitempty"`
	PrivateKey []byte                      `json:"secretKey,omitempty"` // for tests
}

GenesisAccount is an account in the state of the genesis block.

func (GenesisAccount) MarshalJSON

func (g GenesisAccount) MarshalJSON() ([]byte, error)

MarshalJSON marshals as JSON.

func (*GenesisAccount) UnmarshalJSON

func (g *GenesisAccount) UnmarshalJSON(input []byte) error

UnmarshalJSON unmarshals from JSON.

type GenesisAlloc

type GenesisAlloc map[common.Address]GenesisAccount

GenesisAlloc specifies the initial state that is part of the genesis block.

func (*GenesisAlloc) UnmarshalJSON

func (ga *GenesisAlloc) UnmarshalJSON(data []byte) error

type GenesisMismatchError

type GenesisMismatchError struct {
	Stored, New common.Hash
}

GenesisMismatchError is raised when trying to overwrite an existing genesis block with an incompatible one.

func (*GenesisMismatchError) Error

func (e *GenesisMismatchError) Error() string

type HeaderChain

type HeaderChain struct {
	// contains filtered or unexported fields
}

HeaderChain implements the basic block header chain logic that is shared by core.BlockChain and light.LightChain. It is not usable in itself, only as a part of either structure.

HeaderChain is responsible for maintaining the header chain including the header query and updating.

The components maintained by headerchain includes: (1) total difficult (2) header (3) block hash -> number mapping (4) canonical number -> hash mapping and (5) head header flag.

It is not thread safe either, the encapsulating chain structures should do the necessary mutex locking/unlocking.

func NewHeaderChain

func NewHeaderChain(chainDb ethdb.Database, config *params.ChainConfig, engine consensus.Engine, procInterrupt func() bool) (*HeaderChain, error)

NewHeaderChain creates a new HeaderChain structure. ProcInterrupt points to the parent's interrupt semaphore.

func (*HeaderChain) Config

func (hc *HeaderChain) Config() *params.ChainConfig

Config retrieves the header chain's chain configuration.

func (*HeaderChain) CurrentHeader

func (hc *HeaderChain) CurrentHeader() *types.Header

CurrentHeader retrieves the current head header of the canonical chain. The header is retrieved from the HeaderChain's internal cache.

func (*HeaderChain) Engine

func (hc *HeaderChain) Engine() consensus.Engine

Engine retrieves the header chain's consensus engine.

func (*HeaderChain) GetAncestor

func (hc *HeaderChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64)

GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the number of blocks to be individually checked before we reach the canonical chain.

Note: ancestor == 0 returns the same block, 1 returns its parent and so on.

func (*HeaderChain) GetBlock

func (hc *HeaderChain) GetBlock(hash common.Hash, number uint64) *types.Block

GetBlock implements consensus.ChainReader, and returns nil for every input as a header chain does not have blocks available for retrieval.

func (*HeaderChain) GetBlockHashesFromHash

func (hc *HeaderChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash

GetBlockHashesFromHash retrieves a number of block hashes starting at a given hash, fetching towards the genesis block.

func (*HeaderChain) GetBlockNumber

func (hc *HeaderChain) GetBlockNumber(hash common.Hash) *uint64

GetBlockNumber retrieves the block number belonging to the given hash from the cache or database

func (*HeaderChain) GetCanonicalHash

func (hc *HeaderChain) GetCanonicalHash(number uint64) common.Hash

func (*HeaderChain) GetHeader

func (hc *HeaderChain) GetHeader(hash common.Hash, number uint64) *types.Header

GetHeader retrieves a block header from the database by hash and number, caching it if found.

func (*HeaderChain) GetHeaderByHash

func (hc *HeaderChain) GetHeaderByHash(hash common.Hash) *types.Header

GetHeaderByHash retrieves a block header from the database by hash, caching it if found.

func (*HeaderChain) GetHeaderByNumber

func (hc *HeaderChain) GetHeaderByNumber(number uint64) *types.Header

GetHeaderByNumber retrieves a block header from the database by number, caching it (associated with its hash) if found.

func (*HeaderChain) GetTd

func (hc *HeaderChain) GetTd(hash common.Hash, number uint64) *big.Int

GetTd retrieves a block's total difficulty in the canonical chain from the database by hash and number, caching it if found.

func (*HeaderChain) GetTdByHash

func (hc *HeaderChain) GetTdByHash(hash common.Hash) *big.Int

GetTdByHash retrieves a block's total difficulty in the canonical chain from the database by hash, caching it if found.

func (*HeaderChain) HasHeader

func (hc *HeaderChain) HasHeader(hash common.Hash, number uint64) bool

HasHeader checks if a block header is present in the database or not. In theory, if header is present in the database, all relative components like td and hash->number should be present too.

func (*HeaderChain) InsertHeaderChain

func (hc *HeaderChain) InsertHeaderChain(chain []*types.Header, writeHeader WhCallback, start time.Time) (int, error)

InsertHeaderChain attempts to insert the given header chain in to the local chain, possibly creating a reorg. If an error is returned, it will return the index number of the failing header as well an error describing what went wrong.

The verify parameter can be used to fine tune whether nonce verification should be done or not. The reason behind the optional check is because some of the header retrieval mechanisms already need to verfy nonces, as well as because nonces can be verified sparsely, not needing to check each.

func (*HeaderChain) SetCurrentHeader

func (hc *HeaderChain) SetCurrentHeader(head *types.Header)

SetCurrentHeader sets the in-memory head header marker of the canonical chan as the given header.

func (*HeaderChain) SetGenesis

func (hc *HeaderChain) SetGenesis(head *types.Header)

SetGenesis sets a new genesis block header for the chain

func (*HeaderChain) SetHead

func (hc *HeaderChain) SetHead(head uint64, updateFn UpdateHeadBlocksCallback, delFn DeleteBlockContentCallback)

SetHead rewinds the local chain to a new head. Everything above the new head will be deleted and the new one set.

func (*HeaderChain) ValidateHeaderChain

func (hc *HeaderChain) ValidateHeaderChain(chain []*types.Header, checkFreq int, contiguousHeaders bool) (int, error)

func (*HeaderChain) WriteHeader

func (hc *HeaderChain) WriteHeader(header *types.Header) (status WriteStatus, err error)

WriteHeader writes a header into the local chain, given that its parent is already known. If the total difficulty of the newly inserted header becomes greater than the current known TD, the canonical chain is re-routed.

Note: This method is not concurrent-safe with inserting blocks simultaneously into the chain, as side effects caused by reorganisations cannot be emulated without the real blocks. Hence, writing headers directly should only be done in two scenarios: pure-header mode of operation (light clients), or properly separated header/block phases (non-archive clients).

type Message added in v1.4.0

type Message interface {
	From() common.Address
	To() *common.Address

	GasPrice() *big.Int
	Gas() uint64

	// FeeCurrency specifies the currency for gas and gateway fees.
	// nil correspond to Celo Gold (native currency).
	// All other values should correspond to ERC20 contract addresses extended to be compatible with gas payments.
	FeeCurrency() *common.Address
	GatewayFeeRecipient() *common.Address
	GatewayFee() *big.Int
	Value() *big.Int

	Nonce() uint64
	CheckNonce() bool
	Data() []byte

	// Whether this transaction omitted the 3 Celo-only fields (FeeCurrency & co.)
	EthCompatible() bool
}

Message represents a message sent to a contract.

type NewMinedBlockEvent

type NewMinedBlockEvent struct{ Block *types.Block }

NewMinedBlockEvent is posted when a block has been imported.

type NewTxsEvent

type NewTxsEvent struct{ Txs []*types.Transaction }

NewTxsEvent is posted when a batch of transactions enter the transaction pool.

type Prefetcher

type Prefetcher interface {
	// Prefetch processes the state changes according to the Ethereum rules by running
	// the transaction messages using the statedb, but any changes are discarded. The
	// only goal is to pre-cache transaction signatures and state trie nodes.
	Prefetch(block *types.Block, statedb *state.StateDB, cfg vm.Config, interrupt *uint32)
}

Prefetcher is an interface for pre-caching transaction signatures and state.

type Processor

type Processor interface {
	// Process processes the state changes according to the Ethereum rules by running
	// the transaction messages using the statedb and applying any rewards to the
	// processor (coinbase).
	Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (types.Receipts, []*types.Log, uint64, error)
}

Processor is an interface for processing blocks using a given initial state.

type RemovedLogsEvent

type RemovedLogsEvent struct{ Logs []*types.Log }

RemovedLogsEvent is posted when a reorg happens

type StateProcessor

type StateProcessor struct {
	// contains filtered or unexported fields
}

StateProcessor is a basic Processor, which takes care of transitioning state from one point to another.

StateProcessor implements Processor.

func NewStateProcessor

func NewStateProcessor(config *params.ChainConfig, bc *BlockChain, engine consensus.Engine) *StateProcessor

NewStateProcessor initialises a new StateProcessor.

func (*StateProcessor) Process

func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (types.Receipts, []*types.Log, uint64, error)

Process processes the state changes according to the Ethereum rules by running the transaction messages using the statedb and applying any rewards to the processor (coinbase).

Process returns the receipts and logs accumulated during the process and returns the amount of gas that was used in the process. If any of the transactions failed to execute due to insufficient gas it will return an error.

type StateTransition

type StateTransition struct {
	// contains filtered or unexported fields
}

The State Transitioning Model

A state transition is a change made when a transaction is applied to the current world state The state transitioning model does all the necessary work to work out a valid new state root.

1) Nonce handling 2) Pre pay gas 3) Create a new state object if the recipient is \0*32 4) Value transfer == If contract creation ==

4a) Attempt to run transaction data
4b) If valid, use result as code for the new state object

== end == 5) Run Script section 6) Derive new state root

func NewStateTransition

func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool, vmRunner vm.EVMRunner) *StateTransition

NewStateTransition initialises and returns a new state transition object.

func (*StateTransition) TransitionDb

func (st *StateTransition) TransitionDb() (*ExecutionResult, error)

TransitionDb will transition the state by applying the current message and returning the evm execution result with following fields.

  • used gas: total gas used (including gas being refunded)
  • returndata: the returned data from evm
  • concrete execution error: various **EVM** error which aborts the execution, e.g. ErrOutOfGas, ErrExecutionReverted

However if any consensus issue encountered, return the error directly with nil evm execution result.

type TxPool

type TxPool struct {
	// contains filtered or unexported fields
}

TxPool contains all currently known transactions. Transactions enter the pool when they are received from the network or submitted locally. They exit the pool when they are included in the blockchain.

The pool separates processable transactions (which can be applied to the current state) and future transactions. Transactions move between those two states over time as they are received and processed.

func NewTxPool

func NewTxPool(config TxPoolConfig, chainconfig *params.ChainConfig, chain blockChain) *TxPool

NewTxPool creates a new transaction pool to gather, sort and filter inbound transactions from the network.

func (*TxPool) AddLocal

func (pool *TxPool) AddLocal(tx *types.Transaction) error

AddLocal enqueues a single local transaction into the pool if it is valid. This is a convenience wrapper aroundd AddLocals.

func (*TxPool) AddLocals

func (pool *TxPool) AddLocals(txs []*types.Transaction) []error

AddLocals enqueues a batch of transactions into the pool if they are valid, marking the senders as a local ones, ensuring they go around the local pricing constraints.

This method is used to add transactions from the RPC API and performs synchronous pool reorganization and event propagation.

func (*TxPool) AddRemote deprecated

func (pool *TxPool) AddRemote(tx *types.Transaction) error

AddRemote enqueues a single transaction into the pool if it is valid. This is a convenience wrapper around AddRemotes.

Deprecated: use AddRemotes

func (*TxPool) AddRemotes

func (pool *TxPool) AddRemotes(txs []*types.Transaction) []error

AddRemotes enqueues a batch of transactions into the pool if they are valid. If the senders are not among the locally tracked ones, full pricing constraints will apply.

This method is used to add transactions from the p2p network and does not wait for pool reorganization and internal event propagation.

func (*TxPool) AddRemotesSync

func (pool *TxPool) AddRemotesSync(txs []*types.Transaction) []error

This is like AddRemotes, but waits for pool reorganization. Tests use this method.

func (*TxPool) Content

func (pool *TxPool) Content() (map[common.Address]types.Transactions, map[common.Address]types.Transactions)

Content retrieves the data content of the transaction pool, returning all the pending as well as queued transactions, grouped by account and sorted by nonce.

func (*TxPool) GasPrice

func (pool *TxPool) GasPrice() *big.Int

GasPrice returns the current gas price enforced by the transaction pool.

func (*TxPool) Get

func (pool *TxPool) Get(hash common.Hash) *types.Transaction

Get returns a transaction if it is contained in the pool and nil otherwise.

func (*TxPool) Has

func (pool *TxPool) Has(hash common.Hash) bool

Has returns an indicator whether txpool has a transaction cached with the given hash.

func (*TxPool) Locals

func (pool *TxPool) Locals() []common.Address

Locals retrieves the accounts currently considered local by the pool.

func (*TxPool) Nonce

func (pool *TxPool) Nonce(addr common.Address) uint64

Nonce returns the next nonce of an account, with all transactions executable by the pool already applied on top.

func (*TxPool) Pending

func (pool *TxPool) Pending() (map[common.Address]types.Transactions, error)

Pending retrieves all currently processable transactions, grouped by origin account and sorted by nonce. The returned transaction set is a copy and can be freely modified by calling code.

func (*TxPool) SetGasPrice

func (pool *TxPool) SetGasPrice(price *big.Int)

SetGasPrice updates the minimum price required by the transaction pool for a new transaction, and drops all transactions below this threshold.

func (*TxPool) Stats

func (pool *TxPool) Stats() (int, int)

Stats retrieves the current pool stats, namely the number of pending and the number of queued (non-executable) transactions.

func (*TxPool) Status

func (pool *TxPool) Status(hashes []common.Hash) []TxStatus

Status returns the status (unknown/pending/queued) of a batch of transactions identified by their hashes.

func (*TxPool) Stop

func (pool *TxPool) Stop()

Stop terminates the transaction pool.

func (*TxPool) SubscribeNewTxsEvent

func (pool *TxPool) SubscribeNewTxsEvent(ch chan<- NewTxsEvent) event.Subscription

SubscribeNewTxsEvent registers a subscription of NewTxsEvent and starts sending event to the given channel.

type TxPoolConfig

type TxPoolConfig struct {
	Locals    []common.Address // Addresses that should be treated by default as local
	NoLocals  bool             // Whether local transaction handling should be disabled
	Journal   string           // Journal of local transactions to survive node restarts
	Rejournal time.Duration    // Time interval to regenerate the local transaction journal

	PriceLimit uint64 // Minimum gas price to enforce for acceptance into the pool
	PriceBump  uint64 // Minimum price bump percentage to replace an already existing transaction (nonce)

	AccountSlots uint64 // Number of executable transaction slots guaranteed per account
	GlobalSlots  uint64 // Maximum number of executable transaction slots for all accounts
	AccountQueue uint64 // Maximum number of non-executable transaction slots permitted per account
	GlobalQueue  uint64 // Maximum number of non-executable transaction slots for all accounts

	Lifetime time.Duration // Maximum amount of time non-executable transaction are queued
}

TxPoolConfig are the configuration parameters of the transaction pool.

type TxStatus

type TxStatus uint

TxStatus is the current status of a transaction as seen by the pool.

const (
	TxStatusUnknown TxStatus = iota
	TxStatusQueued
	TxStatusPending
	TxStatusIncluded
)

func (TxStatus) String

func (s TxStatus) String() string

type UpdateHeadBlocksCallback

type UpdateHeadBlocksCallback func(ethdb.KeyValueWriter, *types.Header) (uint64, bool)

UpdateHeadBlocksCallback is a callback function that is called by SetHead before head header is updated. The method will return the actual block it updated the head to (missing state) and a flag if setHead should continue rewinding till that forcefully (exceeded ancient limits)

type Validator

type Validator interface {
	// ValidateBody validates the given block's content.
	ValidateBody(block *types.Block) error

	// ValidateState validates the given statedb and optionally the receipts and
	// gas used.
	ValidateState(block *types.Block, state *state.StateDB, receipts types.Receipts, usedGas uint64) error
}

Validator is an interface which defines the standard for block validation. It is only responsible for validating block contents, as the header validation is done by the specific consensus engines.

type WhCallback

type WhCallback func(*types.Header) error

WhCallback is a callback function for inserting individual headers. A callback is used for two reasons: first, in a LightChain, status should be processed and light chain events sent, while in a BlockChain this is not necessary since chain events are sent after inserting blocks. Second, the header writes should be protected by the parent chain mutex individually.

type WriteStatus

type WriteStatus byte

WriteStatus status of write

const (
	NonStatTy WriteStatus = iota
	CanonStatTy
	SideStatTy
)

Directories

Path Synopsis
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
Provides support for dealing with EVM assembly instructions (e.g., disassembling them).
Package bloombits implements bloom filtering on batches of data.
Package bloombits implements bloom filtering on batches of data.
Package forkid implements EIP-2124 (https://eips.ethereum.org/EIPS/eip-2124).
Package forkid implements EIP-2124 (https://eips.ethereum.org/EIPS/eip-2124).
Package rawdb contains a collection of low level database accessors.
Package rawdb contains a collection of low level database accessors.
Package state provides a caching layer atop the Ethereum state trie.
Package state provides a caching layer atop the Ethereum state trie.
snapshot
Package snapshot implements a journalled, dynamic state dump.
Package snapshot implements a journalled, dynamic state dump.
Package types contains data types related to Ethereum consensus.
Package types contains data types related to Ethereum consensus.
vm
Package vm implements the Ethereum Virtual Machine.
Package vm implements the Ethereum Virtual Machine.
runtime
Package runtime provides a basic execution model for executing EVM code.
Package runtime provides a basic execution model for executing EVM code.

Jump to

Keyboard shortcuts

? : This menu
/ : Search site
f or F : Jump to
y or Y : Canonical URL