Documentation ¶
Index ¶
- Constants
- Variables
- func EncodePayload(w io.Writer, payload *Payload) error
- func FilterTags(tags, groups []string) []string
- func GrainKey(name, measure, aggr string) string
- func SetSublayersOnSpan(span *pb.Span, values []SublayerValue)
- func SplitTag(tag string) (group, value string)
- func TagGroup(tag string) string
- func Weight(s *pb.Span) float64
- type Bucket
- type Concentrator
- type Count
- type Distribution
- type Input
- type Payload
- type RawBucket
- type SublayerCalculator
- type SublayerMap
- type SublayerValue
- type Subtrace
- type Tag
- type TagSet
- func (t TagSet) Get(name string) Tag
- func (t TagSet) HasExactly(groups []string) bool
- func (t TagSet) Key() string
- func (t TagSet) Len() int
- func (t TagSet) Less(i, j int) bool
- func (t TagSet) Match(groups []string) TagSet
- func (t TagSet) MatchFilters(filters []string) TagSet
- func (t TagSet) Swap(i, j int)
- func (t TagSet) TagKey(m string) string
- func (t TagSet) Unset(name string) TagSet
- type WeightedSpan
- type WeightedTrace
Constants ¶
const ( HITS string = "hits" ERRORS = "errors" DURATION = "duration" )
Hardcoded measures names for ease of reference
Variables ¶
var ( // DefaultCounts is an array of the measures we represent as Count by default DefaultCounts = [...]string{HITS, ERRORS, DURATION} // DefaultDistributions is an array of the measures we represent as Distribution by default // Not really used right now as we don't have a way to easily add new distros DefaultDistributions = [...]string{DURATION} )
Functions ¶
func EncodePayload ¶
EncodePayload encodes the payload as Gzipped JSON into w.
func FilterTags ¶
FilterTags will return the tags that have the given group.
func GrainKey ¶
GrainKey generates the key used to aggregate counts and distributions which is of the form: name|measure|aggr for example: serve|duration|service:webserver
func SetSublayersOnSpan ¶
func SetSublayersOnSpan(span *pb.Span, values []SublayerValue)
SetSublayersOnSpan takes some sublayers and pins them on the given span.Metrics
func SplitTag ¶
SplitTag splits the tag into group and value. If it doesn't have a separator the empty string will be used for the group.
Types ¶
type Bucket ¶
type Bucket struct { Start int64 // Timestamp of start in our format Duration int64 // Duration of a bucket in nanoseconds // Stats indexed by keys Counts map[string]Count // All the counts Distributions map[string]Distribution // All the distributions (e.g.: for quantile queries) ErrDistributions map[string]Distribution // All the error distributions (e.g.: for apdex, as they account for frustrated) }
Bucket is a time bucket to track statistic around multiple Counts
type Concentrator ¶
type Concentrator struct { In chan []*Input Out chan []Bucket // contains filtered or unexported fields }
Concentrator produces time bucketed statistics from a stream of raw traces. https://en.wikipedia.org/wiki/Knelson_concentrator Gets an imperial shitton of traces, and outputs pre-computed data structures allowing to find the gold (stats) amongst the traces.
func NewConcentrator ¶
func NewConcentrator(aggregators []string, bsize int64, out chan []Bucket) *Concentrator
NewConcentrator initializes a new concentrator ready to be started
func (*Concentrator) Add ¶
func (c *Concentrator) Add(inputs []*Input)
Add applies the given input to the concentrator.
func (*Concentrator) Flush ¶
func (c *Concentrator) Flush() []Bucket
Flush deletes and returns complete statistic buckets
func (*Concentrator) Run ¶
func (c *Concentrator) Run()
Run runs the main loop of the concentrator goroutine. Traces are received through `Add`, this loop only deals with flushing.
type Count ¶
type Count struct { Key string `json:"key"` Name string `json:"name"` // the name of the trace/spans we count (was a member of TagSet) Measure string `json:"measure"` // represents the entity we count, e.g. "hits", "errors", "time" (was Name) TagSet TagSet `json:"tagset"` // set of tags for which we account this Distribution TopLevel float64 `json:"top_level"` // number of top-level spans contributing to this count Value float64 `json:"value"` // accumulated values }
Count represents one specific "metric" we track for a given tagset A count keeps track of the total for a metric during a given time in a certain dimension. By default we keep count of "hits", "errors" and "durations". Others can be added (from the Metrics map in a span), but they have to be enabled manually.
Example: hits between X and X+5s for service:dogweb and resource:dash.list
type Distribution ¶
type Distribution struct { Key string `json:"key"` Name string `json:"name"` // the name of the trace/spans we count (was a member of TagSet) Measure string `json:"measure"` // represents the entity we count, e.g. "hits", "errors", "time" TagSet TagSet `json:"tagset"` // set of tags for which we account this Distribution TopLevel float64 `json:"top_level"` // number of top-level spans contributing to this count Summary *quantile.SliceSummary `json:"summary"` // actual representation of data }
Distribution represents a true image of the spectrum of values, allowing arbitrary quantile queries A distribution works the same way Counts do, but instead of accumulating values it keeps a sense of the repartition of the values. It uses the Greenwald-Khanna online summary algorithm.
A distribution can answer to an arbitrary quantile query within a given epsilon. For each "range" of values in our pseudo-histogram we keep a trace ID (a sample) so that we can give the user an example of a trace for a given quantile query.
func NewDistribution ¶
func NewDistribution(m, ckey, name string, tgs TagSet) Distribution
NewDistribution returns a new Distribution for a metric and a given tag set
func (Distribution) Add ¶
func (d Distribution) Add(v float64, sampleID uint64)
Add inserts the proper values in a given distribution from a span
func (Distribution) Copy ¶
func (d Distribution) Copy() Distribution
Copy returns a distro with the same data but a different underlying summary
func (Distribution) Merge ¶
func (d Distribution) Merge(d2 Distribution)
Merge is used when 2 Distributions represent the same thing and it merges the 2 underlying summaries
func (Distribution) Weigh ¶
func (d Distribution) Weigh(weight float64) Distribution
Weigh applies a weight factor to a distribution and return the result as a new distribution.
type Input ¶
type Input struct { Trace WeightedTrace Sublayers SublayerMap Env string }
Input contains input for the concentractor.
type Payload ¶
type Payload struct { HostName string `json:"hostname"` Env string `json:"env"` Stats []Bucket `json:"stats"` }
Payload represents the payload to be flushed to the stats endpoint
type RawBucket ¶
type RawBucket struct {
// contains filtered or unexported fields
}
RawBucket is used to compute span data and aggregate it within a time-framed bucket. This should not be used outside the agent, use Bucket for this.
func NewRawBucket ¶
NewRawBucket opens a new calculation bucket for time ts and initializes it properly
func (*RawBucket) Export ¶
Export transforms a RawBucket into a Bucket, typically used before communicating data to the API, as RawBucket is the internal type while Bucket is the public, shared one.
func (*RawBucket) HandleSpan ¶
func (sb *RawBucket) HandleSpan(s *WeightedSpan, env string, aggregators []string, sublayers []SublayerValue)
HandleSpan adds the span to this bucket stats, aggregated with the finest grain matching given aggregators
type SublayerCalculator ¶
type SublayerCalculator struct {
// contains filtered or unexported fields
}
SublayerCalculator holds arrays used to compute sublayer metrics. Re-using its fields between calls by sharing the same instance reduces allocations. A sublayer metric is the execution duration of a given type / service in a trace The metrics generated are detailed here: https://docs.datadoghq.com/tracing/guide/metrics_namespace/#duration-by
func NewSublayerCalculator ¶
func NewSublayerCalculator() *SublayerCalculator
NewSublayerCalculator returns a new SublayerCalculator.
func (*SublayerCalculator) ComputeSublayers ¶
func (s *SublayerCalculator) ComputeSublayers(trace pb.Trace) []SublayerValue
ComputeSublayers extracts sublayer values by type and service for a trace
Description of the algorithm, with the following trace as an example:
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 |===|===|===|===|===|===|===|===|===|===|===|===|===|===|===| <-1------------------------------------------------->
<-2-----------------> <-3---------> <-4---------> <-5-------------------> <--6--------------------> <-7------------->
id 1: service=web-server, type=web, parent=nil id 2: service=pg, type=db, parent=1 id 3: service=render, type=web, parent=1 id 4: service=pg-read, type=db, parent=2 id 5: service=redis, type=cache, parent=1 id 6: service=rpc1, type=rpc, parent=1 id 7: service=alert, type=rpc, parent=6
Step 1: Compute the exec duration of each span of the trace. For a period of time when a span is active, the exec duration is defined as: periodDuration / numberOfActiveSpans during that period
{ spanID 1: 10/1 (between tp 0 and 10) + 10/2 (between tp 120 and 130) = 15, ... spanID 7: 10/2 (between tp 110 and 120) + 10/2 (between tp 120 and 130) + 20/1 (between tp 130 and 150), }
Step 2: Build a service and type duration mapping by:
- iterating over each span
- add to the span's type and service duration the duration portion { web-server: 15, render: 15, pg: 12.5, pg-read: 15, redis: 27.5, rpc1: 30, alert: 40, } { web: 70, cache: 55, db: 55, rpc: 55, }
type SublayerMap ¶
type SublayerMap map[*pb.Span][]SublayerValue
SublayerMap maps spans to their sublayer values.
type SublayerValue ¶
SublayerValue is just a span-metric placeholder for a given sublayer val
func (SublayerValue) GoString ¶
func (v SublayerValue) GoString() string
GoString returns a description of a sublayer value.
func (SublayerValue) String ¶
func (v SublayerValue) String() string
String returns a description of a sublayer value.
type Subtrace ¶
Subtrace represents the combination of a root span and the trace consisting of all its descendant spans
type Tag ¶
Tag represents a key / value dimension on traces and stats.
func NewTagFromString ¶
NewTagFromString returns a new Tag from a raw string
type TagSet ¶
type TagSet []Tag
TagSet is a combination of given tags, it is equivalent to contexts that we use for metrics. Although we choose a different terminology here to avoid confusion, and tag sets do not have a notion of activeness over time. A tag can be:
• one of the fixed ones we defined in the span structure: service, resource and host • one of the arbitrary metadata key included in the span (it needs to be turned on manually)
When we track statistics by tag sets, we basically track every tag combination we're interested in to create dimensions, for instance:
- (service)
- (service, environment)
- (service, host)
- (service, resource, environment)
- (service, resource)
- ..
func NewTagSetFromString ¶
NewTagSetFromString returns a new TagSet from a raw string
func (TagSet) HasExactly ¶
HasExactly returns true if we have tags only for the given groups.
func (TagSet) MatchFilters ¶
MatchFilters returns a tag set of the tags that match certain filters. A filter is defined as : "KEY:VAL" where:
- KEY is a non-empty string
- VALUE is a string (can be empty)
A tag {Name:k, Value:v} from the input tag set will match if:
- KEY==k and VALUE is non-empty and v==VALUE
- KEY==k and VALUE is empty (don't care about v)
type WeightedSpan ¶
type WeightedSpan struct { Weight float64 // Span weight. Similar to the trace root.Weight(). TopLevel bool // Is this span a service top-level or not. Similar to span.TopLevel(). Measured bool // Is this span marked for metrics computation. *pb.Span }
WeightedSpan extends Span to contain weights required by the Concentrator.
type WeightedTrace ¶
type WeightedTrace []*WeightedSpan
WeightedTrace is a slice of WeightedSpan pointers.
func NewWeightedTrace ¶
func NewWeightedTrace(trace pb.Trace, root *pb.Span) WeightedTrace
NewWeightedTrace returns a weighted trace, with coefficient required by the concentrator.
Source Files ¶
Directories ¶
Path | Synopsis |
---|---|
Package quantile implements "Space-Efficient Online Computation of Quantile Summaries" (Greenwald, Khanna 2001): http://infolab.stanford.edu/~datar/courses/cs361a/papers/quantiles.pdf This implementation is backed by a skiplist to make inserting elements into the summary faster.
|
Package quantile implements "Space-Efficient Online Computation of Quantile Summaries" (Greenwald, Khanna 2001): http://infolab.stanford.edu/~datar/courses/cs361a/papers/quantiles.pdf This implementation is backed by a skiplist to make inserting elements into the summary faster. |